skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sprinkle, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electric Vehicle (EV) charging has been a significant barrier to the widespread use of EVs. Traditional EV charging methods depend on cables, and there are concerns about safety, accessibility, convenience, and weather. A recent development, dynamic (or in-motion) wireless charging, enables EVs to charge wirelessly by incorporating charging infrastructure into roadways, allowing EVs to charge while moving. However, the energy transferred relies heavily on vehicle speed and time spent in the charging lane. This paper proposes an innovative solution that combines dynamic wire-less charging with Variable Speed Limit (VSL) control. This dynamic traffic control strategy adjusts speed limits based on real-time traffic, weather, and incidents. This integration of dynamic wireless charging and VSL has two potential benefits. First, it can motivate driver compliance with VSL through the incentive of charging. Second, it can promote smoother traffic flow and improve traffic safety by implementing lower speed limits at certain times. To verify these benefits, microscopic traffic simulations in SUMO were conducted under different EV penetration rates and VSL compliance rates. Simulation results reveal that the proposed approach can enhance dynamic wireless charging system performance while improving traffic flow and safety 
    more » « less
  2. In order to develop custom controllers intended to operate vehicles on a live highway, a series of data collection-focused tests were performed at increasing stages of complexity. Modern vehicles with features like Adaptive Cruise Control (ACC) feature a rich set of sensors and drive-by-wire mechanisms. The presented stages of data collection begins with the analysis of raw data provided by various vehicles, and eventually results in spoofing Controller Area Network (CAN) protocols for sending control commands to operate a vehicle. This paper covers the data and technical efforts needed at various stages. The raw data and tools to plot the data are also publicly available. 
    more » « less
  3. This paper experimentally tests an implementation of a control barrier function (CBF) designed to guarantee a minimum time-gap in car following on an automated vehicle (AV) in live traffic, with a majority occurring on freeways. The CBF supervises a nominal unsafe PID controller on the AV’s velocity. The experimental testing spans two months of driving, of which 1.9 hours of data is collected in which the CBF and nominal controller are active. We find that violations of the guaranteed minimum time-gap are observed, as measured by the vehicle’s on-board radar unit. There are two distinct causes of the violations. First, in multi-lane traffic, Cut-ins from other vehicles represent external disturbances that can immediately violate the minimum guaranteed time gap provided by the CBF. When cut-ins occur, the CBF does eventually return the vehicle to a safe time gap. Second, even when cut-ins do not occur, system model inaccuracies (e.g., sensor error and delay, actuator error and delay) can lead to violations of the minimum time-gap. These violations are small relative to the violations that would have occurred using only the unsafe nominal control law. 
    more » « less